287 research outputs found

    Neural correlates of fear: insights from neuroimaging

    Get PDF
    Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions), and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of the insights into fear, anxiety, and avoidance at the individual level extrapolate to groups and populations and can be meaningfully applied to economics, prejudice, and politics. Fear is ultimately a contagious social emotion

    Avoidant symptoms in PTSD predict fear circuit activation during multimodal fear extinction

    Get PDF
    Convergent evidence suggests that individuals with posttraumatic stress disorder (PTSD) exhibit exaggerated avoidance behaviors as well as abnormalities in Pavlonian fear conditioning. However, the link between the two features of this disorder is not well understood. In order to probe the brain basis of aberrant extinction learning in PTSD, we administered a multimodal classical fear conditioning/extinction paradigm that incorporated affectively relevant information from two sensory channels (visual and tactile) while participants underwent fMRI scanning. The sample consisted of fifteen OEF/OIF veterans with PTSD. In response to conditioned cues and contextual information, greater avoidance symptomatology was associated with greater activation in amygdala, hippocampus, vmPFC, dmPFC, and insula, during both fear acquisition and fear extinction. Heightened responses to previously conditioned stimuli in individuals with more severe PTSD could indicate a deficiency in safety learning, consistent with PTSD symptomatology. The close link between avoidance symptoms and fear circuit activation suggests that this symptom cluster may be a key component of fear extinction deficits in PTSD and/or may be particularly amenable to change through extinction-based therapie

    Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats

    Get PDF
    Cognitions and emotions can be influenced by bodily physiology. Here, we investigated whether the processing of brief fear stimuli is selectively gated by their timing in relation to individual heartbeats. Emotional and neutral faces were presented to human volunteers at cardiac systole, when ejection of blood from the heart causes arterial baroreceptors to signal centrally the strength and timing of each heartbeat, and at diastole, the period between heartbeats when baroreceptors are quiescent. Participants performed behavioral and neuroimaging tasks to determine whether these interoceptive signals influence the detection of emotional stimuli at the threshold of conscious awareness and alter judgments of emotionality of fearful and neutral faces. Our results show that fearful faces were detected more easily and were rated as more intense at systole than at diastole. Correspondingly, amygdala responses were greater to fearful faces presented at systole relative to diastole. These novel findings highlight a major channel by which short-term interoceptive fluctuations enhance perceptual and evaluative processes specifically related to the processing of fear and threat and counter the view that baroreceptor afferent signaling is always inhibitory to sensory perception

    Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal

    Get PDF
    Post-traumatic stress disorder (PTSD) patients display pervasive fear memories, expressed indiscriminately. Proposed mechanisms include enhanced fear learning and impaired extinction or extinction recall. Documented extinction recall deficits and failure to use safety signals could result from general failure to use contextual information, a hippocampus-dependent process. This can be probed by adding a renewal phase to standard conditioning and extinction paradigms. Human subjects with PTSD and combat controls were conditioned (skin conductance response), extinguished, and tested for extinction retention and renewal in a scanner (fMRI). Fear conditioning (light paired with shock) occurred in one context, followed by extinction in another, to create danger and safety contexts. The next day, the extinguished conditioned stimulus (CS+E) was re-presented to assess extinction recall (safety context) and fear renewal (danger context). PTSD patients showed impaired extinction recall, with increased skin conductance and heightened amygdala activity to the extinguished CS+ in the safety context. However, they also showed impaired fear renewal; in the danger context, they had less skin conductance response to CS+E and lower activity in amygdala and ventral-medial prefrontal cortex compared with combat controls. Control subjects displayed appropriate contextual modulation of memory recall, with extinction (safety) memory prevailing in the safety context, and fear memory prevailing in the danger context. PTSD patients could not use safety context to sustain suppression of extinguished fear memory, but they also less effectively used danger context to enhance fear. They did not display globally enhanced fear expression, but rather showed a globally diminished capacity to use contextual information to modulate fear expression

    Interoceptive Ability Predicts Survival on a London Trading Floor.

    Get PDF
    Interoception is the sensing of physiological signals originating inside the body, such as hunger, pain and heart rate. People with greater sensitivity to interoceptive signals, as measured by, for example, tests of heart beat detection, perform better in laboratory studies of risky decision-making. However, there has been little field work to determine if interoceptive sensitivity contributes to success in real-world, high-stakes risk taking. Here, we report on a study in which we quantified heartbeat detection skills in a group of financial traders working on a London trading floor. We found that traders are better able to perceive their own heartbeats than matched controls from the non-trading population. Moreover, the interoceptive ability of traders predicted their relative profitability, and strikingly, how long they survived in the financial markets. Our results suggest that signals from the body - the gut feelings of financial lore - contribute to success in the markets.UK Economic and Social Research Council (Programme Grant), European Research Council (Grant ID: ERC AdG324150:CCFIB), Dr. Mortimer and Theresa Sackler Foundation, National Institute for Health Research Cambridge Biomedical Research Centre, ARC DECRA Fellowship, Queensland Smart Future FundThis is the final version of the article. It first appeared from Nature Publishing Group via https://doi.org/10.1038/srep3298

    Alterations in amygdala-prefrontal functional connectivity account for excessive worry and autonomic dysregulation in generalized anxiety disorder

    Get PDF
    Background: Generalized anxiety disorder (GAD) is characterized by the core symptom of uncontrollable worry. Functional magnetic resonance imaging studies link this symptom to aberrant functional connectivity between the amygdala and prefrontal cortex. Patients with GAD also display a characteristic pattern of autonomic dysregulation. Although frontolimbic circuitry is implicated in the regulation of autonomic arousal, no previous study to our knowledge combined functional magnetic resonance imaging with peripheral physiologic monitoring in these patients to test the hypothesis that core symptoms of worry and autonomic dysregulation in GAD arise from a shared underlying neural mechanism. Methods: We used resting-state functional magnetic resonance imaging and the measurement of parasympathetic autonomic function (heart rate variability) in 19 patients with GAD and 21 control subjects to define neural correlates of autonomic and cognitive responses before and after induction of perseverative cognition. Seed-based analyses were conducted to quantify brain changes in functional connectivity with the right and left amygdala. Results: Before induction, patients showed relatively lower connectivity between the right amygdala and right superior frontal gyrus, right paracingulate/anterior cingulate cortex, and right supramarginal gyrus than control subjects. After induction, such connectivity patterns increased in patients with GAD and decreased in control subjects, and these changes tracked increases in state perseverative cognition. Moreover, decreases in functional connectivity between the left amygdala and subgenual cingulate cortex and between the right amygdala and caudate nucleus predicted the magnitude of reduction in heart rate variability after induction. Conclusions: Our results link functional brain mechanisms underlying worry and rumination to autonomic dyscontrol, highlighting overlapping neural substrates associated with cognitive and autonomic responses to the induction of perseverative cognitions in patients with GAD
    • …
    corecore